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Reconstruction Results from ABC Dataset

Sharp features such as edges, corners and Using an autoencoder network, we study the effect of

boundaries are important for human visual perception. various loss functions on reconstruction quality of models

Current loss functions for reconstructing 3D objects, from ABC dataset. All hyperparameters were kept constant.

especially for point or mesh based networks, focus on
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either the overall shape or the input point distribution.

Result with Chamfer Loss
CD Metro

median max median max

We propose a new loss function namely, Quadric loss: . Input Normal loss Surfaceloss Chamferloss Quadric loss
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» A point-surface loss function.
It preserves sharp features - edges, corners and boundaries.

» Works with any point/mesh based architecture for 3D
reconstruction.

L1 loss

No Hyperparameters. L2 loss

Differentiable.

Fast and easy to optimize.

The code and data are available |so-value surface
on project page
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