
WACV2018
IEEE Winter Conf. on
Applications
of Computer Vision

Learning Embedding of 3D Models with Quadric Loss
Nitin Agarwal1, Sung-eui Yoon2, M. Gopi1

1Department of Computer Science, University of California, Irvine
2School of Computing, KAIST

Motivation

Quadric Loss

Reconstruction Results from ABC Dataset

Contributions

Project Webpage - https://www.ics.uci.edu/~agarwal/quadricLoss

We propose a new loss function namely, Quadric loss:

Ø A point-surface loss function.

Ø It preserves sharp features - edges, corners and boundaries.

Ø Works with any point/mesh based architecture for 3D
reconstruction.

Ø No Hyperparameters.

Ø Differentiable.

Ø Fast and easy to optimize.

where a2 + b2 + c2 = 1
<latexit sha1_base64="YjN91/+vLLglOtN11AGavMjiv3U=">AAACBXicbVDLSgMxFM34rPU16lIXwSIIQpmpgoIIRTcuK9gHtGPJpLdtaCYzJBmlDN248VfcuFDErf/gzr8xnc5CWw/kcjjnXm7u8SPOlHacb2tufmFxaTm3kl9dW9/YtLe2ayqMJYUqDXkoGz5RwJmAqmaaQyOSQAKfQ90fXI39+j1IxUJxq4cReAHpCdZllGgjte29hz5IwK1zTO5K+Aj7aaWmXmC3bRecopMCzxI3IwWUodK2v1qdkMYBCE05UarpOpH2EiI1oxxG+VasICJ0QHrQNFSQAJSXpFeM8IFROrgbSvOExqn6eyIhgVLDwDedAdF9Ne2Nxf+8Zqy7Z17CRBRrEHSyqBtzrEM8jgR3mASq+dAQQiUzf8W0TySh2gSXNyG40yfPklqp6B4XSzcnhfJlFkcO7aJ9dIhcdIrK6BpVUBVR9Iie0St6s56sF+vd+pi0zlnZzA76A+vzBxHAlRM=</latexit>

s
<latexit sha1_base64="4KhsXsLRS0yWwJxg4osvGl7oqcQ=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcSQwM9N+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn88RTcmaVAQljbZ9CMld/b2Q0MmYSBXZyltAsezPxP6+bYnjtZ0IlKXLFFh+FqSQYk9n5ZCA0ZygnllCmhc1K2IhqytCWVLIleMsnr5JWrepdVGv3l5X6TV5HEU7gFM7Bgyuowx00oAkMFDzDK7w5xnlx3p2PxWjByXeO4Q+czx8XF5Ew</latexit>

= [x, y, z, 1]T
<latexit sha1_base64="5JoVyD8tZAA8zi7ZhcGJuUXT8pk=">AAAB+HicbVDLSgNBEOyNrxgfWfXoZTAIHkLYjYJehKAXjxHygmQNs5PZZMjsg5lZcbPkS7x4UMSrn+LNv3GS7EETCxqKqm66u9yIM6ks69vIra1vbG7ltws7u3v7RfPgsCXDWBDaJCEPRcfFknIW0KZiitNOJCj2XU7b7vh25rcfqZAsDBoqiajj42HAPEaw0lLfLF53n8ooKaNJGdnOQ6NvlqyKNQdaJXZGSpCh3je/eoOQxD4NFOFYyq5tRcpJsVCMcDot9GJJI0zGeEi7mgbYp9JJ54dP0alWBsgLha5Aobn6eyLFvpSJ7+pOH6uRXPZm4n9eN1belZOyIIoVDchikRdzpEI0SwENmKBE8UQTTATTtyIywgITpbMq6BDs5ZdXSatasc8r1fuLUu0miyMPx3ACZ2DDJdTgDurQBAIxPMMrvBkT48V4Nz4WrTkjmzmCPzA+fwAXSpFs</latexit>

Background:

p1

p2

p3
p4

p5

p6
p7

t
<latexit sha1_base64="N8HxvA6Y/ZvbKr3Q/JexCreHa0g=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcSQww2m/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGzeeIpObPKgISxtk8hmau/NzIaGTOJAjs5S2iWvZn4n9dNMbz2M6GSFLlii4/CVBKMyex8MhCaM5QTSyjTwmYlbEQ1ZWhLKtkSvOWTV0mrVvUuqrX7y0r9Jq+jCCdwCufgwRXU4Q4a0AQGCp7hFd4c47w4787HYrTg5DvH8AfO5w8YnJEx</latexit>

�(s) = sTQts
<latexit sha1_base64="RqLNGqSfzlXav+OHRB/RGirI+ss=">AAAB/nicbVDLSsNAFJ3UV42vqLhyM1iEuilJFXQjFHXhsoW+oI1hMp20QycPZm6EEgr+ihsXirj1O9z5NyZtFtp64MLhnHu59x43ElyBaX5rhZXVtfWN4qa+tb2zu2fsH7RVGEvKWjQUoey6RDHBA9YCDoJ1I8mI7wrWcce3md95ZFLxMGjCJGK2T4YB9zglkEqOcdS/YwJIWZ3ha6wemg0HlK47RsmsmDPgZWLlpIRy1B3jqz8IaeyzAKggSvUsMwI7IRI4FWyq92PFIkLHZMh6KQ2Iz5SdzM6f4tNUGWAvlGkFgGfq74mE+EpNfDft9AmM1KKXif95vRi8KzvhQRQDC+h8kRcLDCHOssADLhkFMUkJoZKnt2I6IpJQSBPLQrAWX14m7WrFOq9UGxel2k0eRxEdoxNURha6RDV0j+qohShK0DN6RW/ak/aivWsf89aCls8coj/QPn8AbcaT2A==</latexit>

Qt
<latexit sha1_base64="3tdokg83f2R+1vklmNeC7dxrKp8=">AAAB9HicdVDLSsNAFJ3UV62vqks3g0VwFZL0le6Kbly2YG2hDWUynbRDJ5M4MymU0O9w40IRt36MO//GSVtBRQ8MHM65l3vm+DGjUlnWh5Hb2Nza3snvFvb2Dw6PiscndzJKBCYdHLFI9HwkCaOcdBRVjPRiQVDoM9L1p9eZ350RIWnEb9U8Jl6IxpwGFCOlJW8QIjXxg7Q9VIvCsFiyzEajZtVdaJm26zrlqiY1p16p2tA2rSVKYI3WsPg+GEU4CQlXmCEp+7YVKy9FQlHMyKIwSCSJEZ6iMelrylFIpJcuQy/ghVZGMIiEflzBpfp9I0WhlPPQ15NZSPnby8S/vH6iAtdLKY8TRTheHQoSBlUEswbgiAqCFZtrgrCgOivEEyQQVrqnrISvn8L/yZ1j2mXTaVdKzat1HXlwBs7BJbBBHTTBDWiBDsDgHjyAJ/BszIxH48V4XY3mjPXOKfgB4+0TEuGSTw==</latexit>

�(t) = 0
<latexit sha1_base64="kYDpPIFnKNME3b2mFSxKcI08qOk=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBDiJexGQS9CUA8eI5gHJEuYncwmQ2YfzvQGwpLv8OJBEa9+jDf/xkmyB00saCiquunu8mIpNNr2t7Wyura+sZnbym/v7O7tFw4OGzpKFON1FslItTyquRQhr6NAyVux4jTwJG96w9up3xxxpUUUPuI45m5A+6HwBaNoJLdzxyXSEp6Ra2J3C0W7bM9AlomTkSJkqHULX51exJKAh8gk1brt2DG6KVUomOSTfCfRPKZsSPu8bWhIA67ddHb0hJwapUf8SJkKkczU3xMpDbQeB57pDCgO9KI3Ff/z2gn6V24qwjhBHrL5Ij+RBCMyTYD0hOIM5dgQypQwtxI2oIoyNDnlTQjO4svLpFEpO+flysNFsXqTxZGDYziBEjhwCVW4hxrUgcETPMMrvFkj68V6tz7mrStWNnMEf2B9/gCqN5C4</latexit>

�(s) =
X

i2N (t)

(pTi s)
2

<latexit sha1_base64="ADIvt1dUg7roPS5WGNxJYn/Oo/E=">AAACHHicbVDLSgNBEJz1GeMr6tHLYBCSS9hNBL0IQT14kgh5QTZZZieTZMjs7DLTK4QlH+LFX/HiQREvHgT/xsnjoIkFDUVVN91dfiS4Btv+tlZW19Y3NlNb6e2d3b39zMFhXYexoqxGQxGqpk80E1yyGnAQrBkpRgJfsIY/vJ74jQemNA9lFUYRawekL3mPUwJG8jIl94YJIDmdx5fY1XHgJRy7XGI3IDCgRCR34xzkxzgXebxT1flOEXuZrF2wp8DLxJmTLJqj4mU+3W5I44BJoIJo3XLsCNoJUcCpYOO0G2sWETokfdYyVJKA6XYyfW6MT43Sxb1QmZKAp+rviYQEWo8C33ROTtaL3kT8z2vF0LtoJ1xGMTBJZ4t6scAQ4klSuMsVoyBGhhCquLkV0wFRhILJM21CcBZfXib1YsEpFYr3Z9ny1TyOFDpGJyiHHHSOyugWVVANUfSIntErerOerBfr3fqYta5Y85kj9AfW1w+lAJ/X</latexit>

=
X

i2N (t)

sT (pip
T
i)s

<latexit sha1_base64="gDOY4CfkmUpcKysMebd9ktJ8nTA=">AAACFXicbVDLSsNAFJ3UV62vqEs3g0VoQUpSBd0IRTeupEJf0KRhMp20QyeTMDMRSshPuPFX3LhQxK3gzr9x+lho62EGDufcy733+DGjUlnWt5FbWV1b38hvFra2d3b3zP2DlowSgUkTRywSHR9JwignTUUVI51YEBT6jLT90c3Ebz8QIWnEG2ocEzdEA04DipHSkmeeXkFHJqGXUuhQDp0QqSFGLL3LSqqcQdlrlGKP6tdrlKVnFq2KNQVcJvacFMEcdc/8cvoRTkLCFWZIyq5txcpNkVAUM5IVnESSGOERGpCuphyFRLrp9KoMnmilD4NI6M8VnKq/O1IUSjkOfV052VouehPxP6+bqODSTSmPE0U4ng0KEgZVBCcRwT4VBCs21gRhQfWuEA+RQFjpIAs6BHvx5GXSqlbss0r1/rxYu57HkQdH4BiUgA0uQA3cgjpoAgwewTN4BW/Gk/FivBsfs9KcMe85BH9gfP4A+sWeFA==</latexit>

= sT (
X

i2N (t)

QPi)s

<latexit sha1_base64="R9ABWn3RAwY1anJwtcCzR4Glzb8=">AAACFXicbVDLSsNAFJ3UV62vqks3g0VoQUpSBd0IRTeupIW+oKlhMp20QyeTMDMRSshPuPFX3LhQxK3gzr9x0mahrQcuHM65l3vvcUNGpTLNbyO3srq2vpHfLGxt7+zuFfcPOjKIBCZtHLBA9FwkCaOctBVVjPRCQZDvMtJ1Jzep330gQtKAt9Q0JAMfjTj1KEZKS07x9ArK+xYs2zLynZhCm3Jo+0iNMWLxXVJWlQQ2nbjh0KQinWLJrJozwGViZaQEMjSc4pc9DHDkE64wQ1L2LTNUgxgJRTEjScGOJAkRnqAR6WvKkU/kIJ59lcATrQyhFwhdXMGZ+nsiRr6UU9/VnenBctFLxf+8fqS8y0FMeRgpwvF8kRcxqAKYRgSHVBCs2FQThAXVt0I8RgJhpYMs6BCsxZeXSadWtc6qteZ5qX6dxZEHR+AYlIEFLkAd3IIGaAMMHsEzeAVvxpPxYrwbH/PWnJHNHII/MD5/AIgEndI=</latexit>

pi = [a, b, c, d]T
<latexit sha1_base64="KV7sUOZQXNiOc8m3q1nagurAjtE=">AAAB/XicbVDLSsNAFL3xWesrPnZuBovgopSkCroRim5cVugL2hgmk0k7dPJgZiLUUPwVNy4Ucet/uPNvnLZZaOuBC4dz7uXee7yEM6ks69tYWl5ZXVsvbBQ3t7Z3ds29/ZaMU0Fok8Q8Fh0PS8pZRJuKKU47iaA49Dhte8Obid9+oEKyOGqoUUKdEPcjFjCClZZc8zBxGbpCXVxGXhmRMvKd+4ZrlqyKNQVaJHZOSpCj7ppfPT8maUgjRTiWsmtbiXIyLBQjnI6LvVTSBJMh7tOuphEOqXSy6fVjdKIVHwWx0BUpNFV/T2Q4lHIUerozxGog572J+J/XTVVw6WQsSlJFIzJbFKQcqRhNokA+E5QoPtIEE8H0rYgMsMBE6cCKOgR7/uVF0qpW7LNK9e68VLvO4yjAERzDKdhwATW4hTo0gcAjPMMrvBlPxovxbnzMWpeMfOYA/sD4/AEH3pME</latexit>

Computation:

M1
<latexit sha1_base64="1mBvDmIoH2/cJwUsJZMaa1PAgGU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kWoaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqZ+6wmV5rF8NOME/YgOJA85o8ZKD3c9r1cquxV3BrJMvJyUIUe9V/rq9mOWRigNE1Trjucmxs+oMpwJnBS7qcaEshEdYMdSSSPUfjY7dUJOrdInYaxsSUNm6u+JjEZaj6PAdkbUDPWiNxX/8zqpCa/8jMskNSjZfFGYCmJiMv2b9LlCZsTYEsoUt7cSNqSKMmPTKdoQvMWXl0mzWvHOK9X7i3LtOo+jAMdwAmfgwSXU4Bbq0AAGA3iGV3hzhPPivDsf89YVJ585gj9wPn8Ay22NeQ==</latexit>

S2
<latexit sha1_base64="kLcpFIHym7cLgoy9chW3l97DFMM=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rFS+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfju5nffuLaiFg94iThfkSHSoSCUbRSo9Gv9ktlt+LOQVaJl5My5Kj3S1+9QczSiCtkkhrT9dwE/YxqFEzyabGXGp5QNqZD3rVU0YgbP5ufOiXnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MbPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2naEPwll9eJa1qxbusVB+uyrXbPI4CnMIZXIAH11CDe6hDExgM4Rle4c2Rzovz7nwsWtecfOYE/sD5/AHWFY2A</latexit>

Input Surface Reconstruction

·<latexit sha1_base64="yfc6NYWr3Im+ZBK4Ggu2CK70rVE=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvNpl262YTdiVBKf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXZlIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJprxn2WylR3Qmq4FIr7KFDyTqY5TULJ2+Hobua3n7g2IlWPOM54kNCBErFgFK3k91iUYr9SdWvuHGSVeAWpQoFmv/LVi1KWJ1whk9SYrudmGEyoRsEkn5Z7ueEZZSM64F1LFU24CSbzY6fk3CoRiVNtSyGZq78nJjQxZpyEtjOhODTL3kz8z+vmGN8EE6GyHLlii0VxLgmmZPY5iYTmDOXYEsq0sLcSNqSaMrT5lG0I3vLLq6RVr3mXtfrDVbVxW8RRglM4gwvw4BoacA9N8IGBgGd4hTdHOS/Ou/OxaF1zipkT+APn8wfaWI62</latexit>

X
<latexit sha1_base64="lXNimHrjaDw1OBrGyJYiyJRtSGo=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84BkCbOT2WTIzOwyDyEs+QUvHhTx6g9582+cTfagiQUNRVU33V1Rypk2vv/tra1vbG5tl3bKu3v7B4eVo+O2TqwitEUSnqhuhDXlTNKWYYbTbqooFhGnnWhyl/udJ6o0S+SjmaY0FHgkWcwINrnU11YMKlW/5s+BVklQkCoUaA4qX/1hQqyg0hCOte4FfmrCDCvDCKezct9qmmIywSPac1RiQXWYzW+doXOnDFGcKFfSoLn6eyLDQuupiFynwGasl71c/M/rWRPfhBmTqTVUksWi2HJkEpQ/joZMUWL41BFMFHO3IjLGChPj4im7EILll1dJu14LLmv1h6tq47aIowSncAYXEMA1NOAemtACAmN4hld484T34r17H4vWNa+YOYE/8D5/ADM5jlc=</latexit>

(sT ⌦ sT)
<latexit sha1_base64="bsB8qmmUG/+IuT0Dvta648CBMEw=">AAAB+nicbZDLSsNAFIZP6q3WW6pLN4NFqJuSVEGXRTcuK/QGbSyT6aQdOpmEmYlSYh/FjQtF3Pok7nwbp20W2vrDwMd/zuGc+f2YM6Ud59vKra1vbG7ltws7u3v7B3bxsKWiRBLaJBGPZMfHinImaFMzzWknlhSHPqdtf3wzq7cfqFQsEg09iakX4qFgASNYG6tvF8vqvoF6kWYhVcjwWd8uORVnLrQKbgYlyFTv21+9QUSSkApNOFaq6zqx9lIsNSOcTgu9RNEYkzEe0q5Bgc0mL52fPkWnxhmgIJLmCY3m7u+JFIdKTULfdIZYj9RybWb+V+smOrjyUibiRFNBFouChCMdoVkOaMAkJZpPDGAimbkVkRGWmGiTVsGE4C5/eRVa1Yp7XqneXZRq11kceTiGEyiDC5dQg1uoQxMIPMIzvMKb9WS9WO/Wx6I1Z2UzR/BH1ucP6tuTIQ==</latexit>

Qt
<latexit sha1_base64="sBtXc0d7zaFwIhzqI5UUCIoFS20=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rFF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfju5nffuLaiFg94iThfkSHSoSCUbTSQ6OP/VLZrbhzkFXi5aQMOer90ldvELM04gqZpMZ0PTdBP6MaBZN8WuylhieUjemQdy1VNOLGz+anTsm5VQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPEzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2hC85ZdXSata8S4r1cZVuXabx1GAUziDC/DgGmpwD3VoAoMhPMMrvDnSeXHenY9F65qTz5zAHzifPzcgjcA=</latexit>

(B ⇥N ⇥ 16)
<latexit sha1_base64="IVvl813pbWHUijemdTV5r8hCPJM=">AAAB/3icbZDLSgMxFIYz9VbrbVRw4yZYhLopM1XUZakbV1LBXqAdSibNtKGZzJCcEUrtwldx40IRt76GO9/GtB1BW38IfPznHM7J78eCa3CcLyuztLyyupZdz21sbm3v2Lt7dR0lirIajUSkmj7RTHDJasBBsGasGAl9wRr+4GpSb9wzpXkk72AYMy8kPckDTgkYq2MfFCq4DTxkGt/8gHt+0rHzTtGZCi+Cm0Iepap27M92N6JJyCRQQbRuuU4M3ogo4FSwca6daBYTOiA91jIoiVnkjab3j/Gxcbo4iJR5EvDU/T0xIqHWw9A3nSGBvp6vTcz/aq0EgktvxGWcAJN0tihIBIYIT8LAXa4YBTE0QKji5lZM+0QRCiaynAnBnf/yItRLRfe0WLo9y5craRxZdIiOUAG56AKV0TWqohqi6AE9oRf0aj1az9ab9T5rzVjpzD76I+vjGzzblE8=</latexit>

(B ⇥N ⇥ 16)
<latexit sha1_base64="IVvl813pbWHUijemdTV5r8hCPJM=">AAAB/3icbZDLSgMxFIYz9VbrbVRw4yZYhLopM1XUZakbV1LBXqAdSibNtKGZzJCcEUrtwldx40IRt76GO9/GtB1BW38IfPznHM7J78eCa3CcLyuztLyyupZdz21sbm3v2Lt7dR0lirIajUSkmj7RTHDJasBBsGasGAl9wRr+4GpSb9wzpXkk72AYMy8kPckDTgkYq2MfFCq4DTxkGt/8gHt+0rHzTtGZCi+Cm0Iepap27M92N6JJyCRQQbRuuU4M3ogo4FSwca6daBYTOiA91jIoiVnkjab3j/Gxcbo4iJR5EvDU/T0xIqHWw9A3nSGBvp6vTcz/aq0EgktvxGWcAJN0tihIBIYIT8LAXa4YBTE0QKji5lZM+0QRCiaynAnBnf/yItRLRfe0WLo9y5craRxZdIiOUAG56AKV0TWqohqi6AE9oRf0aj1az9ab9T5rzVjpzD76I+vjGzzblE8=</latexit>

t
<latexit sha1_base64="N8HxvA6Y/ZvbKr3Q/JexCreHa0g=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcSQww2m/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGzeeIpObPKgISxtk8hmau/NzIaGTOJAjs5S2iWvZn4n9dNMbz2M6GSFLlii4/CVBKMyex8MhCaM5QTSyjTwmYlbEQ1ZWhLKtkSvOWTV0mrVvUuqrX7y0r9Jq+jCCdwCufgwRXU4Q4a0AQGCp7hFd4c47w4787HYrTg5DvH8AfO5w8YnJEx</latexit>

s
<latexit sha1_base64="4KhsXsLRS0yWwJxg4osvGl7oqcQ=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcSQwM9N+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn88RTcmaVAQljbZ9CMld/b2Q0MmYSBXZyltAsezPxP6+bYnjtZ0IlKXLFFh+FqSQYk9n5ZCA0ZygnllCmhc1K2IhqytCWVLIleMsnr5JWrepdVGv3l5X6TV5HEU7gFM7Bgyuowx00oAkMFDzDK7w5xnlx3p2PxWjByXeO4Q+czx8XF5Ew</latexit>

Comparison: No Manual
Annotations DifferentiableOptimizes

Fast &
EfficientFocus

DGCNN
(1024)

ATLASNET
(N=25)

Using an autoencoder network, we study the effect of
various loss functions on reconstruction quality of models
from ABC dataset. All hyperparameters were kept constant.

Lossquad(S2,M1) =
X

s2S2

sTQts
<latexit sha1_base64="mLSUuCCM3egzeCCb6w22MH23L2c=">AAACGHicbVDLSgNBEJz1GeMr6tHLYBAiSNyNgl6EoBcPCgnmBUlcZieTZMjs7Do9K4Qln+HFX/HiQRGvufk3Th4HTSxoKKq66e7yQsFB2/a3tbC4tLyymlhLrm9sbm2ndnYrEESKsjINRKBqHgEmuGRlzbVgtVAx4nuCVb3e9civPjEFPJAl3Q9Z0ycdyducEm0kN3VyGwC48WNEWoPMvZs7vnOdI3yJGxD5bgy4wSU28gDDQ6noanBTaTtrj4HniTMlaTRFwU0NG62ARj6TmgoCUHfsUDdjojSngg2SjQhYSGiPdFjdUEl8Bs14/NgAHxqlhduBMiU1Hqu/J2LiA/R9z3T6RHdh1huJ/3n1SLcvmjGXYaSZpJNF7UhgHeBRSrjFFaNa9A0hVHFzK6ZdogjVJsukCcGZfXmeVHJZ5zSbK56l81fTOBJoHx2gDHLQOcqjG1RAZUTRM3pF7+jDerHerE/ra9K6YE1n9tAfWMMfH3iekQ==</latexit>

Chamfer loss Quadric lossInput Surface lossNormal loss

Result without Chamfer Loss
Result with Chamfer Loss

CD + Surface CD + QuadricInput CD + NormalChamfer loss

Reconstruction Results from ModelNet40 Dataset

Using the same autoencoder we also test
quadric loss on shapes from ModelNet40.

C
D

 +

Q
ua

dr
ic

In
pu

t
Q

ua
dr

ic
C

ha
m

fe
r

Losses CD Metro

median max median max

Quadric loss 51.92 400.02 3.18 11.25
Chamfer loss 4.51 96.76 3.05 13.60

Quadric + Chamfer 5.59 89.46 3.09 11.10

Table 1: Quadric loss on modelNet40

Losses CD Metro

median max median max

Quadric loss
Chamfer loss

Quadric + Chamfer loss

Table 2: Quadric loss with pointNet

1

AGARWAL ET AL.: EMBEDDING OF 3D MODELS WITH QUADRIC LOSS 7

Losses CD Metro

median max median max

Normal loss 397.09 1750.6 10.65 28.38
Surface loss 21.86 398.85 6.11 24.93
Quadric loss 9.44 217.5 3.18 20.80
Chamfer loss 1.97 40.87 3.13 19.08

Normal + Chamfer loss 2.97 39.83 3.38 19.21
Surface + Chamfer loss 2.23 37.04 3.16 18.87
Quadric + Chamfer loss 2.21 36.78 2.96 18.80

Table 1: 3D reconstruction results on models from the test set. We compare different loss
functions using Chamfer distance (CD), computed on 2500 points, multiplied by 103 and
Metro error [3], multiplied by 10. Among all four losses, Chamfer loss best preserves the
overall structure and point distribution which is reflected in its low CD and Metro values.
Quadric loss preserves sharp edges and corners (Fig. 4) but has a higher CD when compared
to Chamfer loss. Combining quadric with Chamfer achieves best results.

size to 8064 models. We also simplified the models using Q-slim [6] to reduce the vertex
count to 2500 vertices, and centered and normalized them to a unit sphere. We randomly
split the data to get a distribution of 90% for training and 10% for testing.

4.2 Network & Implementation Details
Although Quadric Loss can potentially be used with any point or mesh based network, we use
an auto-encoder based network and analyze the reconstruction quality during shape recon-
struction. We use the encoder from Dynamic Graph CNN (DGCNN) [24], which performs
convolution over k-nearest neighbours in the feature space at every layer and is currently the
state of the art for point cloud analysis. Specifically, we use the classification architecture
without the spatial transformer and the fully connected layers to encode a point cloud of
2500 vertices into a latent vector dimension of 1024.

For the decoder we use AtlasNet [9], which takes in the 1024 embedding from the
DGCNN encoder and generates an output surface using N learnt parameterizations. We
follow the same training strategy as AtlasNet, which is to sample the learned parameteriza-
tions at every training step to avoid over-fitting. For all the experiments in this paper, we use
this auto-encoder architecture with k = 20, N = 25 and an output point cloud size of 2500.

In order to compare the three point-surface loss functions, we train 4 networks - one
with CD + surface loss, one with CD + normal loss, one with CD + quadric loss and one
with CD alone. To compute the three losses (surface, normal and quadric), we use the
correspondences found from Chamfer distance. For all the experiments we use Adam [11]
optimizer with a batch size of 16. The learning rate was set to 0.001 for all losses except
the networks trained with quadric loss for which we found a slower learning rate of 0.0001
to be most effective. All learning rates were multiplied by 0.8 every 100 epochs. For a
fair comparison we train all the networks to the same number of epochs and we also ensure
that the total loss in each network is an equal contribution of both the loss functions by
weighting the terms appropriately. All the code was implemented in Pytorch and training
was performed on NVIDIA TITAN Xp GPU.

AGARWAL ET AL.: EMBEDDING OF 3D MODELS WITH QUADRIC LOSS 7

Losses CD Metro

median max median max

Normal loss 397.09 1750.6 10.65 28.38
Surface loss 21.86 398.85 6.11 24.93
Quadric loss 9.44 217.5 3.18 20.80
Chamfer loss 1.97 40.87 3.13 19.08

Normal + Chamfer loss 2.97 39.83 3.38 19.21
Surface + Chamfer loss 2.23 37.04 3.16 18.87
Quadric + Chamfer loss 2.21 36.78 2.96 18.80

Table 1: 3D reconstruction results on models from the test set. We compare different loss
functions using Chamfer distance (CD), computed on 2500 points, multiplied by 103 and
Metro error [3], multiplied by 10. Among all four losses, Chamfer loss best preserves the
overall structure and point distribution which is reflected in its low CD and Metro values.
Quadric loss preserves sharp edges and corners (Fig. 4) but has a higher CD when compared
to Chamfer loss. Combining quadric with Chamfer achieves best results.

size to 8064 models. We also simplified the models using Q-slim [6] to reduce the vertex
count to 2500 vertices, and centered and normalized them to a unit sphere. We randomly
split the data to get a distribution of 90% for training and 10% for testing.

4.2 Network & Implementation Details
Although Quadric Loss can potentially be used with any point or mesh based network, we use
an auto-encoder based network and analyze the reconstruction quality during shape recon-
struction. We use the encoder from Dynamic Graph CNN (DGCNN) [24], which performs
convolution over k-nearest neighbours in the feature space at every layer and is currently the
state of the art for point cloud analysis. Specifically, we use the classification architecture
without the spatial transformer and the fully connected layers to encode a point cloud of
2500 vertices into a latent vector dimension of 1024.

For the decoder we use AtlasNet [9], which takes in the 1024 embedding from the
DGCNN encoder and generates an output surface using N learnt parameterizations. We
follow the same training strategy as AtlasNet, which is to sample the learned parameteriza-
tions at every training step to avoid over-fitting. For all the experiments in this paper, we use
this auto-encoder architecture with k = 20, N = 25 and an output point cloud size of 2500.

In order to compare the three point-surface loss functions, we train 4 networks - one
with CD + surface loss, one with CD + normal loss, one with CD + quadric loss and one
with CD alone. To compute the three losses (surface, normal and quadric), we use the
correspondences found from Chamfer distance. For all the experiments we use Adam [11]
optimizer with a batch size of 16. The learning rate was set to 0.001 for all losses except
the networks trained with quadric loss for which we found a slower learning rate of 0.0001
to be most effective. All learning rates were multiplied by 0.8 every 100 epochs. For a
fair comparison we train all the networks to the same number of epochs and we also ensure
that the total loss in each network is an equal contribution of both the loss functions by
weighting the terms appropriately. All the code was implemented in Pytorch and training
was performed on NVIDIA TITAN Xp GPU.

AGARWAL ET AL.: EMBEDDING OF 3D MODELS WITH QUADRIC LOSS 7

Losses CD Metro

median max median max

Normal loss 397.09 1750.6 10.65 28.38
Surface loss 21.86 398.85 6.11 24.93
Quadric loss 9.44 217.5 3.18 20.80
Chamfer loss 1.97 40.87 3.13 19.08

Normal + Chamfer loss 2.97 39.83 3.38 19.21
Surface + Chamfer loss 2.23 37.04 3.16 18.87
Quadric + Chamfer loss 2.21 36.78 2.96 18.80

Table 1: 3D reconstruction results on models from the test set. We compare different loss
functions using Chamfer distance (CD), computed on 2500 points, multiplied by 103 and
Metro error [3], multiplied by 10. Among all four losses, Chamfer loss best preserves the
overall structure and point distribution which is reflected in its low CD and Metro values.
Quadric loss preserves sharp edges and corners (Fig. 4) but has a higher CD when compared
to Chamfer loss. Combining quadric with Chamfer achieves best results.

size to 8064 models. We also simplified the models using Q-slim [6] to reduce the vertex
count to 2500 vertices, and centered and normalized them to a unit sphere. We randomly
split the data to get a distribution of 90% for training and 10% for testing.

4.2 Network & Implementation Details
Although Quadric Loss can potentially be used with any point or mesh based network, we use
an auto-encoder based network and analyze the reconstruction quality during shape recon-
struction. We use the encoder from Dynamic Graph CNN (DGCNN) [24], which performs
convolution over k-nearest neighbours in the feature space at every layer and is currently the
state of the art for point cloud analysis. Specifically, we use the classification architecture
without the spatial transformer and the fully connected layers to encode a point cloud of
2500 vertices into a latent vector dimension of 1024.

For the decoder we use AtlasNet [9], which takes in the 1024 embedding from the
DGCNN encoder and generates an output surface using N learnt parameterizations. We
follow the same training strategy as AtlasNet, which is to sample the learned parameteriza-
tions at every training step to avoid over-fitting. For all the experiments in this paper, we use
this auto-encoder architecture with k = 20, N = 25 and an output point cloud size of 2500.

In order to compare the three point-surface loss functions, we train 4 networks - one
with CD + surface loss, one with CD + normal loss, one with CD + quadric loss and one
with CD alone. To compute the three losses (surface, normal and quadric), we use the
correspondences found from Chamfer distance. For all the experiments we use Adam [11]
optimizer with a batch size of 16. The learning rate was set to 0.001 for all losses except
the networks trained with quadric loss for which we found a slower learning rate of 0.0001
to be most effective. All learning rates were multiplied by 0.8 every 100 epochs. For a
fair comparison we train all the networks to the same number of epochs and we also ensure
that the total loss in each network is an equal contribution of both the loss functions by
weighting the terms appropriately. All the code was implemented in Pytorch and training
was performed on NVIDIA TITAN Xp GPU.

AGARWAL ET AL.: EMBEDDING OF 3D MODELS WITH QUADRIC LOSS 7

Losses CD Metro

median max median max

Normal loss 397.09 1750.6 10.65 28.38
Surface loss 21.86 398.85 6.11 24.93
Quadric loss 9.44 217.5 3.18 20.80
Chamfer loss 1.97 40.87 3.13 19.08

Normal + Chamfer loss 2.97 39.83 3.38 19.21
Surface + Chamfer loss 2.23 37.04 3.16 18.87
Quadric + Chamfer loss 2.21 36.78 2.96 18.80

Table 1: 3D reconstruction results on models from the test set. We compare different loss
functions using Chamfer distance (CD), computed on 2500 points, multiplied by 103 and
Metro error [3], multiplied by 10. Among all four losses, Chamfer loss best preserves the
overall structure and point distribution which is reflected in its low CD and Metro values.
Quadric loss preserves sharp edges and corners (Fig. 4) but has a higher CD when compared
to Chamfer loss. Combining quadric with Chamfer achieves best results.

size to 8064 models. We also simplified the models using Q-slim [6] to reduce the vertex
count to 2500 vertices, and centered and normalized them to a unit sphere. We randomly
split the data to get a distribution of 90% for training and 10% for testing.

4.2 Network & Implementation Details
Although Quadric Loss can potentially be used with any point or mesh based network, we use
an auto-encoder based network and analyze the reconstruction quality during shape recon-
struction. We use the encoder from Dynamic Graph CNN (DGCNN) [24], which performs
convolution over k-nearest neighbours in the feature space at every layer and is currently the
state of the art for point cloud analysis. Specifically, we use the classification architecture
without the spatial transformer and the fully connected layers to encode a point cloud of
2500 vertices into a latent vector dimension of 1024.

For the decoder we use AtlasNet [9], which takes in the 1024 embedding from the
DGCNN encoder and generates an output surface using N learnt parameterizations. We
follow the same training strategy as AtlasNet, which is to sample the learned parameteriza-
tions at every training step to avoid over-fitting. For all the experiments in this paper, we use
this auto-encoder architecture with k = 20, N = 25 and an output point cloud size of 2500.

In order to compare the three point-surface loss functions, we train 4 networks - one
with CD + surface loss, one with CD + normal loss, one with CD + quadric loss and one
with CD alone. To compute the three losses (surface, normal and quadric), we use the
correspondences found from Chamfer distance. For all the experiments we use Adam [11]
optimizer with a batch size of 16. The learning rate was set to 0.001 for all losses except
the networks trained with quadric loss for which we found a slower learning rate of 0.0001
to be most effective. All learning rates were multiplied by 0.8 every 100 epochs. For a
fair comparison we train all the networks to the same number of epochs and we also ensure
that the total loss in each network is an equal contribution of both the loss functions by
weighting the terms appropriately. All the code was implemented in Pytorch and training
was performed on NVIDIA TITAN Xp GPU.

AGARWAL ET AL.: EMBEDDING OF 3D MODELS WITH QUADRIC LOSS 7

Losses CD Metro

median max median max

Normal loss 397.09 1750.6 10.65 28.38
Surface loss 21.86 398.85 6.11 24.93
Quadric loss 9.44 217.5 3.18 20.80
Chamfer loss 1.97 40.87 3.13 19.08

Normal + Chamfer loss 2.97 39.83 3.38 19.21
Surface + Chamfer loss 2.23 37.04 3.16 18.87
Quadric + Chamfer loss 2.21 36.78 2.96 18.80

Table 1: 3D reconstruction results on models from the test set. We compare different loss
functions using Chamfer distance (CD), computed on 2500 points, multiplied by 103 and
Metro error [3], multiplied by 10. Among all four losses, Chamfer loss best preserves the
overall structure and point distribution which is reflected in its low CD and Metro values.
Quadric loss preserves sharp edges and corners (Fig. 4) but has a higher CD when compared
to Chamfer loss. Combining quadric with Chamfer achieves best results.

size to 8064 models. We also simplified the models using Q-slim [6] to reduce the vertex
count to 2500 vertices, and centered and normalized them to a unit sphere. We randomly
split the data to get a distribution of 90% for training and 10% for testing.

4.2 Network & Implementation Details
Although Quadric Loss can potentially be used with any point or mesh based network, we use
an auto-encoder based network and analyze the reconstruction quality during shape recon-
struction. We use the encoder from Dynamic Graph CNN (DGCNN) [24], which performs
convolution over k-nearest neighbours in the feature space at every layer and is currently the
state of the art for point cloud analysis. Specifically, we use the classification architecture
without the spatial transformer and the fully connected layers to encode a point cloud of
2500 vertices into a latent vector dimension of 1024.

For the decoder we use AtlasNet [9], which takes in the 1024 embedding from the
DGCNN encoder and generates an output surface using N learnt parameterizations. We
follow the same training strategy as AtlasNet, which is to sample the learned parameteriza-
tions at every training step to avoid over-fitting. For all the experiments in this paper, we use
this auto-encoder architecture with k = 20, N = 25 and an output point cloud size of 2500.

In order to compare the three point-surface loss functions, we train 4 networks - one
with CD + surface loss, one with CD + normal loss, one with CD + quadric loss and one
with CD alone. To compute the three losses (surface, normal and quadric), we use the
correspondences found from Chamfer distance. For all the experiments we use Adam [11]
optimizer with a batch size of 16. The learning rate was set to 0.001 for all losses except
the networks trained with quadric loss for which we found a slower learning rate of 0.0001
to be most effective. All learning rates were multiplied by 0.8 every 100 epochs. For a
fair comparison we train all the networks to the same number of epochs and we also ensure
that the total loss in each network is an equal contribution of both the loss functions by
weighting the terms appropriately. All the code was implemented in Pytorch and training
was performed on NVIDIA TITAN Xp GPU.

Surface Loss overall shape point-triangle

Edge Loss sharp features point-edge

Normal Loss high order
features inner-product

Quadric Loss sharp features point-plane

Sharp features such as edges, corners and
boundaries are important for human visual perception.
Current loss functions for reconstructing 3D objects,
especially for point or mesh based networks, focus on
either the overall shape or the input point distribution.

Our loss function encourages points to lie along sharp features.

Garland et al., Surface Simplification using Quadric Error Metrics, SIGGRAPH 1997
Yu et al., EC-Net: an Edge-aware Point set Consolidation Network, ECCV 2018
Wang et al., Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images, ECCV 2018

Analytic Drawing of 3D Scaffolds

Ryan Schmidt1,2 Azam Khan1

1Autodesk Research
Karan Singh2

2University of Toronto
Gord Kurtenbach1

Figure 1: Our analytic drawing tool infers 3D scaffolds of linear segments (a) from sketched strokes. 3D feature curves can then be sketched
by deriving position and tangent constraints from the scaffold (b). After fixing the viewpoint and adding image-space silhouette curves (c),
we apply traditional hand-rendering techniques [Robertson 2003] to create a production design drawing of the espresso machine (d).

Abstract
We describe a novel approach to inferring 3D curves from perspec-
tive drawings in an interactive design tool. Our methods are based
on a traditional design drawing style known as analytic drawing,
which supports precise image-space construction of a linear 3D
scaffold. This scaffold in turn acts as a set of visual constraints for
sketching 3D curves. We implement analytic drawing techniques
in a pure-inference sketching interface which supports both single-
and multi-view incremental construction of complex scaffolds and
curve networks. A new representation of 3D drawings is proposed,
and useful interactive drawing aids are described. Novel techniques
are presented for deriving constraints from single-view sketches
drawn relative to the current 3D scaffold, and then inferring 3D line
and curve geometry which satisfies these constraints. The resulting
analytic drawing tool allows 3D drawings to be constructed using
exactly the same strokes as one would make on paper.

Keywords: sketch-based interactive design, perspective drawing,
geometric inference, constraints

1 Introduction
One premise underlying recent work in 3D design interfaces is that
2D drawing is more intuitive than traditional 3D modeling systems,
and hence sketch interpretation will lead to more efficient and ex-
pressive tools. A frequent approach is to utilize sketches as syntax,
incrementally constructing complex 3D models using a grammar
of gestural shape editing operations [Zeleznik et al. 1996; Igarashi
et al. 1999]. Attempts have also been made to interpret the se-
mantics of sketches, using databases of geometric information like
3D templates [Chen et al. 2008] and junction tables [Karpenko and
Hughes 2006]. To support truly freeform 3D design, projections of
sketched strokes can be geometrically inverted based on two draw-
ings of each curve [Cohen et al. 1999; Bae et al. 2008].

Although geometric inversion allows virtually any 3D curve to be
sketched, Karpenko et al. [2004] and others have observed that
it is challenging to “draw what one means” in 3D. This is due
both to drawing skill and inherent perceptual biases in estimates of
foreshortened shapes and dimensions [Taylor and Mitchell 1997;
Schmidt et al. 2009]. Although curves can be corrected in addi-
tional viewpoints [Kara and Shimada 2007], a more precise alterna-
tive is to utilize constraints, such as position and tangent constraints
at key points on a curve, guaranteeing that important relationships
are satisfied. Explicit representation of constraints as 3D geometry
has a long history in variational surface design [Welch and Witkin
1994; Nealen et al. 2007], but constraint specification involves 3D
manipulation which, even with a sketching interface, is a difficult
and tedious task [Schmidt et al. 2008].

Looking to design drawing guides, we find that designers have de-
veloped elegant analytic drawing techniques for specifying 3D ge-
ometric constraints via lines in 2D [Ching 1997; Robertson 2003;
Robertson 2004]. This approach makes extensive use of image-
space construction lines to fix the relative depth of vertices, result-
ing in an unambiguous 3D lattice or scaffold. This 3D scaffold
greatly simplifies the task of both human and automated sketch in-
terpretation. For example, the only valid line segments which ana-
lytic drawing allows are those parallel or perpendicular to existing
lines, or which connect known 3D points. By deriving these and
other constraints from the current scaffold, we can infer an individ-
ual 3D line or freeform curve from one sketch in a single view.

We describe a “pure-inference” drawing interface which under-
stands rules of analytic drawing, allowing designers to directly
sketch complex 3D scaffolds and curve networks without recourse
to modal tools (Figure 1). Our tool closely mimics the physical
motions of pencil-and-paper analytic drawing, while minimizing
the drudgery involving rulers and careful measurement (Section 2).
Since analytic drawing restricts which lines can be drawn, rough
and imprecise strokes can be interpreted with high accuracy. Our
inference strategy incrementally fixes strokes in 3D, creating a scaf-
fold which acts as a context for interpreting sketched curves (Sec-
tion 3). While our tool does allow view rotation, one can draw
extensively from a single view, making the experience much closer
to natural pencil-and-paper sketching than previous systems. We
evaluate the benefits, drawbacks, and limitations of our approach in
Section 4, and demonstrate its utility in a variety of design tasks.

Quadric loss
L1 loss
L2 loss

The code and data are available
on project page

Iso-value surface

