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Abstract

We present a computer vision system that can transcribe
the text on tiny printed labels stacked beneath pinned in-
sects (as found in museum collections). The approach uses
multiple views of each label because the labels are often
occluded by the pin, the insect specimen, and other labels.
Our approach handles occlusion and the extreme viewing
angles required to image the stacked labels. Automated
image analysis identifies the lines of text and then aligns
and rectifies the images. Combining the aligned and rec-
tified images from multiple viewpoints enables us to create
a composite image that can be read using optical charac-
ter recognition tools (OCR) to extract the text. We provide
experimental demonstration using both museum specimens
and experimental test labels.

1. Introduction
Large-scale collections of pinned insects provide data for

studies of taxonomy, biodiversity, biological conservation,
land management, pollination, and biotic responses to cli-
mate change [3, 12, 10]. These collections represent a sig-
nificant societal investment in research [27]. Recent fund-
ing [30, 6] coupled with improved and affordable imaging
has led to a number of collection digitization efforts world-
wide (e.g. [17, 4, 38, 37]).

Insect collections typically have the organisms mounted
on pins with labels beneath each specimen (Fig. 1), and
specimens in boxes with multiple boxes in a drawer. Some
have obtained high-resolution images of whole drawers
[8, 29, 24], although these views do not afford a clear view
of the labels. InvertNet [18] created a robotic camera mount
to image drawers and rotation of the camera affords some
ability to read the labels. Some have explored the use of
“crowd sourcing” to read the labels [13, 15]. Finland’s Dig-
itarium is a semi-automated system that includes removal
of the labels from the pin for imaging [34, 32], producing a
digital image of the label, however, the textual information
must still be transcribed.

Prior efforts to capture the labels have dismissed optical

Figure 1. Images of pinned insect specimens acquired from three
different camera views. Notice the occlusion of the labels from the
insect, other labels and the pin.

character recognition (OCR) as unreliable due to sensitiv-
ity to image quality. Labels beneath the specimens contain
location, species identification, and other information thus
digital capture of the label information as text enables pow-
erful query-based exploration. The focus of this paper is on
methods to extract the label text into digital records.

Our goal is to develop an automated pipeline for capture
of label information that does not require handling or re-
moval of the label from the pin, but captures all the text from
the label. With collections containing millions of speci-
mens,the processing should be on the order of 1-2 seconds
per pin. Our preliminary experiments indicated that OCR
can provide successful transcription of text if the input im-
age is high quality. Our solution was to use a multi-camera
system to collect multiple views of each label and build a
composite image from these occluded fragmentary images
that can then be read by OCR. The prototype system uses
commercial light-field cameras [28, 23] that have an ex-
tended depth of field suitable for imaging at shallow an-
gles that enable imaging of labels stacked on the pin. The
cameras allow dynamic re-focusing and produce depth in-
formation [33, 7] useful for segmentation of the images to
identify the labels.

While other approaches to image and transcribe text on
labels have required removal of the label from the pin, we
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Figure 2. Our pipeline to compute a single rectified-composited
image of a label from multiple camera viewpoints.

are not aware of any automated solutions for reading the la-
bels without removal from the pin. Our work, however, does
have some similarity with other text extraction techniques,
especially methods for reading text from images of books
(i.e. “scanning” a page of text from an image of an open
book), a few of these include [16, 19, 22, 20, 35]. Imaged
pages of books have many lines of text, often on curved
surfaces [39], and approaches to “flatten” these images de-
rive the surface geometry by identifying the text lines (from
which the deformed 2D grid of the text in space can be
transformed to a rectilinear grid). These approaches require
many lines of text to accurately determine the layout of the
text lines on the page. The labels on pinned insects contain
only a few lines of text (range is usually 1-5 lines, with 3-
4 lines of text appearing most frequently in the collections
we have been using). With only a few lines of text, there
is insufficient information to apply the book-scanning tech-
niques [16, 21, 35] directly. Evaluation of available soft-
ware from these prior approaches on our label image data
provided unsatisfactory results.

The collections contain a diversity of formats (text lay-
out, text spacing on the label, inter-label spacing on the pin,
fonts, relative orientation of stacked labels, etc). The insect
specimens and multiple labels on a pin occlude the labels.
Some labels are bent or deformed. We have developed an
approach that handles small, fragmentary label images, ex-
treme viewing angles, and occluded regions (from both the
pin and the specimen). Below we present details of our ap-
proach and provide experimental demonstration using both
museum specimens and experimental test labels.

2. Methods in our Pipeline
Our goal is to obtain an image of the label that is OCR

friendly. We use multiple light field (LF) images of a pinned
insect specimen and the labels taken from different camera
views and build rectified label images that can be compos-
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Figure 3. Workflow to rectify a single label image.

ited to form our OCR-ready image. We make two assump-
tions about the input label images. First, we assume that
the contour of the input labels form a rectangle, where the
text lines are parallel to the longer edge and orthogonal to
the shorter edge of the label in camera space. Second, we
assume that there is very little deformation along the short
edge of the label. Due to the size of the labels, this is a rea-
sonable assumption because deformation of these labels is
typically caused by the effects of gravity. We do not make
any assumption on the kind of deformation for longer edge.

The input to our pipeline are multiple, focused LF im-
ages of different views of a specimen. We segment multiple
labels that may be present in a single LF image and then
find their corresponding labels across multiple LF images
using their depth information. Due to space limitations, de-
tails of this step are omitted here. Given a set of these corre-
sponding segmented label images, we first rectify each label
image to get a fronto-parallel view. We then align all these
images together using feature based non-linear alignment
technique followed by a composition step to generate a sin-
gle OCR friendly image of the complete label (Fig. 2). We
now describe each of these steps in detail.

2.1. Rectification of Label Images

In order to rectify the label images, we build a two-
dimensional coordinate grid which faithfully represents the
underlying text on the labels, i.e. one coordinate along the
text line and the other across the text lines. For this we first
compute the four edges of the labels. Because there is no
guarantee on the number of text lines present on the label
(typically fewer than 5), we use the edges to assist us in find-
ing these coordinate lines. We then compute the location of
the text lines and white space lines followed by text orienta-
tion estimation. Using these we build the two-dimensional
grid and rectify each label image to get a fronto-parallel
view as if the camera was directly over it (Fig. 3).

2.1.1 Label Edge Computation

From each segmented label image, we extract the four edges
of the label. The contours of labels may have arbitrary shape
due to occlusion. To determine label orientation we approx-
imate the bounding box using a modified oriented bounding
box (OBB) [1] computation (where we use the convex hull
because the edge contours of occluded labels cause unstable
behavior of OBB computation).

First, we find the line passing through the two short
edges using peaks in Hough Transform near the rotation
angle of the OBB and determine the pair of edges from all
candidates edges having maximum distance between them
(Fig. 4b). Using these edges/lines we then compute the
four corners of the label. We do not repeat this process for
the longer label lines because the longer edges of the label
often have warping (and do not appear as lines). Instead,
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Figure 4. (a) Label images from Fig. 1 lower row. (b) Shorter
edges (blue), resampled-convex hull (magenta) and the four cor-
ners (black) are used to compute (c) the four edges of the label.

we find the intersection of the convex hull computed earlier
with both the shorter label edges. Using the corners of the
label and the convex hull, we then find all the four edges of
the label by solving for the shortest path between the corner
points using Dijkstra’s algorithm, where points on the con-
vex hull have zero and rest of the points have a weight of 1
(Fig. 4c).

2.1.2 Detection of Text Lines

In order to compute points which lie on lines of the text, we
analyze the intensity profiles between the two long edges
of the label. After smoothing, we compute the valleys in
the smooth-intensity profiles as the location of points on the
text as shown in Figure 5a and 5b. The motivation behind
this step is that we want to compute these text points with-
out relying on noise-sensitive operations such as image bi-
narization and character segmentation.

Using these dense set of points which potentially lie on
the text of the label, we now cluster them such that each
cluster represents a single line of text. This is challenging
because the pin may contribute distracting points and occlu-
sion may lead to large gaps within a line of text. To address
both these issues, we first compute a vector VT , orthogo-
nal to both the short edges of the label, as the most likely
orientation for the text lines. Using this we then construct
a weighted graph G from the set of text points PT using

Figure 5. (a) Intensity profiles (top row) of points (cyan) between
label edges. Valleys (blue) are possible locations for text (red).
Clustering these points (b) finds multiple text lines (c). Notice our
algorithm does not cluster points lying on the pin.

Delaunay Triangulation. Given two vertices vi and vj in
G we compute the edge weight Wij as the product of its
length disij and the angle which the vector vi − vj makes
with VT . The motivation behind choosing such a weight-
ing function is to assign higher weights to edges between
two text lines (these are generally longer and not parallel to
the text) and lower weights to edges along a single text line.
Furthermore, points which lie extremely close to each other
will produce unreliable orientation estimates and hence we
assign their weight to be 0.

Wij =

{
disij .(1−∆v) disij > 1pixels

0 otherwise
(1)

where

∆v = abs

(
dot

(
vi − vj
‖vi − vj‖

,
VT
‖VT ‖

))
(Note this weighting is based on the cosine of the angle).

Using this weighted graph G we continuously prune
edges with high weights in an attempt to remove edges
present between text lines, resulting in a graph with dis-
connected components. At each iteration we check whether
the vertices of the disconnected components form potential
text lines by fitting a cubic polynomial and computing the
fitting error. We stop pruning edges when the ratio of the
sum of the fitting errors from all disconnected components
of current and the previous iteration does not change, sug-
gesting that we are now pruning edges along the text lines.
In order to achieve faster convergence we first perform a
minimum spanning tree (MST) on G and then prune edges
on this MST to obtain all text lines (Fig. 5c).

2.1.3 Detection of White Space Lines

Using the text lines computed above, we first compute an
initial estimation of the white space lines. These are later
refined so that each pair of adjacent white space lines sand-
wich a text-line. To get an initial estimation of the white
space lines, we assume that they lie close to the middle of
two adjacent text lines. Hence, we first construct a Con-
strained Delaunay Triangulation (CDT) [11] using points

(a) (b) (c)

Figure 6. (a) Using the text lines, we construct the CDT (blue) and
compute its Voronoi vertices (green) to get an initial estimation
of points lying on white space lines. This initial estimation (b) is
then refined to obtain pairs of white space lines which sandwich
individual text lines (c).



on the text lines as shown in Figure 6a. Voronoi vertices in
the dual Voronoi diagram corresponds to points represent-
ing the initial white space lines (Fig. 6b).

The initial white space lines are not accurate enough
for warping and rectifying these small labels. We refine
these white space lines by adjusting the white space line
points to sit on top and bottom of the text sandwiching
the text lines. For this, we first compute the points cor-
responding to the top and bottom of the text by finding
the peaks in the intensity profile of the points sandwiched
by the two adjacent white space lines (we expect a sin-
gle valley corresponding to the single line of text). From
the two sets of white space line points lying above and be-
low a text line {(x1, y1), (x2, y2), ....., (xn, yn)}, we sep-
arate those points which do not have any text between
{(x1, y1), (x2, y2), ....., (xs, ys)} and for the remaining n−
s points maximize the following objective function:

E(δy1, δy2, ..., δyi) =
∑

φi(δyi)+λ
∑

ψi,i+1(δyi; δyi+1)

∀i ∈ n− s (2)

where δyi is the vertical shift of points (xi, yi), φi(δyi)
measures the log-likelihood of a shifted point (xi, yi +
δyi) being at the true top or bottom of the text and
ψi,i+i(δyi; δyi+1) is the smoothness measure that penal-
izes sharp changes in the slope between these points.
Note the shift δyi in the white space line points above
and below are in opposite directions. We solve the
above objective function using dynamic programming as
in [35]. The vertical shift δyi for remaining points
{(x1, y1), (x2, y2), ....., (xi, yi)∀i ∈ s} is computed from
the median of {δyi∀i ∈ n − s}. This results in the com-
putation of accurately refined white space lines as shown in
Figure 6c.

2.1.4 Text Orientation Estimation and Rectification

Because there may not be enough text on the label to com-
pute the text orientation and the presence of the pin which
may interfere in computing local stroke statistics as in [35],
we use both the shorter edges of the label as guide to accu-
rately compute the text orientation across the entire label.

We uniformly sample the text lines computed earlier into
K coarse points - points where we want to compute the text

(a) (b) (c)

Figure 7. (a) Regions around text lines are used to find a dominant
orientation guided by the side edges orientation. (b) A 2D coordi-
nate grid is constructed and then used to rectify the label (c).

orientation. We then select a patch around each of these
points such that there is a small overlap between neigh-
boring patches and construct a local histogram of orienta-
tions for every patch. For each of these patches we then se-
lect the top M orientations having maximum magnitude as
candidate text orientations dominant in those patches. We
linearly interpolate the orientation of the two shorter edges
across the sample points and find the closest to the interpo-
lated orientations among the M candidate text orientations.
These then become the final dominant text orientations for
those patches. For patches which are not lying on any text,
we use the interpolated orientation as their final text orien-
tation. By interpolating the orientations of the two shorter
edges of the label, we remove any bias that may be intro-
duced due to the pin and also compute the most plausible
text orientation even in those patches lying on the blank re-
gions of the label (Fig. 7a). We empirically found best
results for K,M=15.

Having computed both the text orientation and the white
space lines accurately, we now can construct the 2D coordi-
nate grid which faithfully represents the underlying text on
the label (Fig. 7b). We use the 2D coordinate grid to rec-
tify these label images to get a fronto-parallel OCR friendly
image (Fig. 7c).

2.2. Non-Linear alignment using Laplacian

Using the above rectification pipeline, we rectify all the
segmented label images from a pinned insect specimen cap-
tured from different camera views. Usually no single image
contains the complete label as it has occlusions from other
labels and/or the the pinned insect, so we create a single
composite image from these rectified labels. For this com-
posite image to be OCR friendly, it is necessary to have an
accurate text-to-text alignment within multiple label images.
Hence we first coarsely align these rectified label images
followed by a non-linear alignment such that text from all
text lines is accurately aligned among these label images.
Given two rectified label images, we now describe the pro-
cess for this non-linear alignment.

Affine Alignment: We first resolve any scale and trans-
lation component between the two label images that may
be present after rectification using a global affine trans-
formation to align images pairwise (Fig. 8b). We com-
pute correspondences between images using scale invariant
SURF features and descriptors [5] and subsequently remove
any outliers using RANSAC. Given these robust correspon-
dences, we solve for affine transformation using linear least
square formulation [2] to get coarse alignment (Fig. 8c).

Non-Linear Alignment: After affine alignment we per-
form a non-linear alignment where we compute dense cor-
respondences between these two affinely aligned label im-
ages and use them to solve the Laplace’s equations with
boundary conditions.



c.

(a) (b)

(c)

(d) (e)

Figure 8. (a) Non-linear alignment of two rectified label images from lower row of Fig 1. (b) Overlay before and (c) after affine alignment.
(d) Dense correspondences (red). Note the smooth displacement field of the correspondences in both x and y direction, used for outlier
(cyan) detection. (e) Final non-linear alignment of text using Laplace Equations with Dirichlet Boundary conditions.

To ensure dense correspondences between the two label
images, we first compute DAISY feature descriptors [36]
for every pixel in both images. We are only interested in the
alignment of text in the two label images thus we only align
regions around each individual text lines. Using image re-
gions containing only one “strip” of text, we first divide it
into patches and compute correspondences for only a few
keypoints inside each patch (Fig. 9a) as described in Algo-
rithm 1.

To get correspondences which are distributed uniformly
across the text strips, we divide each text strip into 20
patches with small overlap such that 10 patches each lie
above and below the text line. Given one patch p in text
strip T1 and its neighboring patches q in the other text strip

Algorithm 1 Feature matching between the two text strips
Input: Two text strips T1 & T2.
Output: Dense correspondences K between them.

1: Divide T1 and T2 into 20 uniform patches.
2: K ← φ
3: for each p patches in T1 do
4: q← Neighbouring patches in T2
5: R← Feature keypoints in p.
6: M ← Feature keypoints in q.
7: for each feature points Ri ∈ R do
8: R′′

i ← Eucledian(Daisy(Ri),Daisy(M))
9: R′′′

i ← Eucledian(Daisy(Ri),Daisy(Neigbours)
10: . Neighbours← pixels ∈ Ω of Ri in T2
11: R′

i ← min(R′′
i , R

′′′
i )

12: add R′
i to K.

return K

T2, we first compute feature keypoint locations using Har-
ris [14] and MSER [25] operators in both p and q and then
match the DAISY descriptors for these keypoints locations.
Let keypoints in patch p be R and in patch q be M . We
then compute R′′

i , the corresponding point of Ri in M that
minimizes the euclidean distance between the DAISY de-
scriptors. To ensure robust correspondence for Ri, we also
compute R′′′

i by comparing the DAISY descriptors of pix-
els within a small neighborhood Ω of Ri in T2. Finally we
compute R′i, the final correspondence for Ri by taking the
minimum between R′′

i and R′′′
i . Throughout our experi-

ments we used Ω=10 pixels.
After computing the correspondences from each pair of

text lines we remove any outliers that may be present by
analyzing the displacement in the correspondences in both
the x and y direction as shown in Figure 8d (we expect the
displacement field in both x and y direction to be smoothly
varying). Using these accurate correspondences we solve
the Laplace’s Equations with Dirichlet boundary conditions
which accurately matches points where we have correspon-
dences and smoothly interpolates rest of the points [2]. Us-
ing the above alignment technique, we align all the label
images of pinned insect specimen to a single label image to
get a set of aligned-rectified label images (Fig. 9b).

2.3. Label Composition

As the final step of our pipeline, we perform composit-
ing of these aligned-rectified label images. Although there
is a rich literature on image composition using image pyra-
mids [9], gradient based techniques [31], exposure fusion
[26], etc, most of these techniques will fail unless we first
segment out the pin. We used a naive approach where for



Figure 9. (a) Dense correspondences computed at feature key-
points between corresponding text-strips from two labels. (b) Set
of 3 aligned-rectified label images from lower row of Fig. 1.

each pixel in the composited image we compute the max
value at that pixel across all the aligned label images to
get rectified-composited image as shown in Figure 10. This
simple method resulted in images that were OCR-ready. We
are currently evaluating the efficacy of using this simple ap-
proach versus other compositing algorithms.

Figure 10. Two results of label composition using 3 views (left
column are from top row of Fig. 1, right column are results from
bottom row). Composition using the maximum value (top row)
at each pixel removes the pin from the final composite image.
Composition using the minimum value at each pixel (middle row)
shows the accuracy of our non-linear text alignment process. For
comparison we also performed composition using exposure fusion
[26] (bottom row). A gap is seen in the composite image in the first
column due to occlusion in all 3 views.

3. Experimental Results
Datasets: We perform evaluation of our method on two
types of datasets: an experimental data set that we cre-
ated and museum specimens. Our real data, comprising of
25 pinned insects specimens from the Chicago Field Mu-
seum of Natural History (FMNH), had at least two labels
per specimen and displayed a variety of issues mentioned
in section 1. Because these were actual specimens, we
could not perform any evaluations that involved extracting
the labels which might damage the specimens. To permit
careful validation of our approach, we created 40 test la-
bels by printing text (replicated from museum labels) onto
card stock paper similar to that used in the museum archives
and a font and a font size similar to that of actual specimen
labels. To test the robustness of our method, the test la-
bels provide a good representation of various scenarios that
one may encounter while digitizing the labels, including:
text lines of varying lengths, uneven line spacing, different
number of text lines (ranging from 1-7), different spacing
within a single text line, different indentations of text, both
upper and lowercase text, text comprising of both alphabet-
ical characters and symbols (Fig. 11). The test labels were
scanned at 600 DPI and then stacked (on average two per
specimen) by casually aligning them using a museum spec-
imen pin. The test labels, however, did not have a specimen
on the pin (and thus the only occlusion of the top label was
from the pin). The labels in both these datasets were im-
aged using a camera rig setup comprising of three first gen-
eration Lyro [23] cameras capable of acquiring light field
images in a single snapshot. The cameras were held in a
rig that allowed us to simultaneously acquire 3 images. For
a “production” pinned insect pipeline, we plan to use more
than three cameras, however for the label text acquisition,
three cameras was sufficient for algorithmic development
and testing.
Evaluation: Due to the fragile nature of the specimens
from FMNH, we only provide qualitative results of our
method on these labels (Fig. 14). Using the 40 test labels we
provide both qualitative (Fig. 11) and quantitative results
of our method. We validate our pipeline by computing the
maximum value of the normalized cross-correlation (val-
idation score) between the rectified-composited image ob-
tained from our method and its scanned image. The scanned
label is, essentially, the best case scenario for systems that
remove the label from the pin. Comparing our output with
the scan, thus provides a metric to the best possible previous
methods of removing and scanning labels.

In order to evaluate potential bottlenecks, we measure
the accuracy of various components in our pipeline. We
check the robustness of white space lines by computing the
total maximum error in the text width of the label from dif-
ferent camera views. Figure 12 shows a plot of the maxi-
mum text width error with the validation score, where the



Figure 11. Coordinate grid (bottom row) computed using our method on a set of challenging labels (top row). These include labels with
single text line, centered text, text on a curved label, and six text lines. Note the robustness of our method to the specimen pin and its shadow
on the label. Using these grids we can successfully rectify these label images. Please see supplementary materials for more examples.

Table 1. Ablation study of Non-Linear Registration

Mean SSD Validation Score

without Non-Linear 699.89 ± 169.76 0.67 ± 0.07
with Non-Linear 428.71 ± 114.28 0.74 ± 0.04

strong correlation suggests that labels with high text width
error could result in bad composite image. We also measure
the accuracy of the non-linear registration by computing the
sum of squared errors (SSD) between the aligned labels.
We normalize it by the number of pixels in the image and
take the mean value as a measure of image-consistency after
alignment. Figure 13 shows a plot of the mean normalized
SSD with the validation score. The strong correlation in the
plot suggests that labels with high mean normalized SSD
might not result in OCR friendly composite image. Both
these scatter plots suggest that errors from one step might
propagate to the final composite image. Hence, such error
metrics help assess the likelihood of the composite image to
have high validation score.

We also studied the effect of non-linear registration in

0.55

0.6

0.65

0.7

0.75

0.8

0 1 2 3 4 5 6 7 8 9 10 11 12

Va
lid
at
io
n	
Sc
or
e

Total	maximum	textWidth error

Not	Readable
Partially		Readable
Readable

Figure 12. Plot between validation score and total maximum text
width error from 40 composite test images after computing the
white space lines using our method. A strong correlation between
the two is seen suggesting labels with high text width error re-
sult in bad composite image. Result of visual inspection (by three
different individuals) of the final composite image is shown using
colored circles. Note the rightmost labels have high errors in text
width resulting in bad composite images (Fig 13).

our pipeline. Effectively, we computed the mean normal-
ized SSD and the validation score with and without (only
affine) non-linear registration (Table 1). We find that non-
linear registration reduces the mean SSD by 38% and in-
crease the validation score by 0.07. To further assess the
quality of the composite, we performed a qualitative study
where three human subjects visually inspected the final
composite image after non-linear and affine registration.
Each subject assessed whether the composite image is read-
able, partially readable or not readable. From the consensus
of the three different individuals we found 47.5% (19/40) of
the labels to be not human readable without the non-linear
registration (Fig. 13).

Though there is ongoing research to improve OCRs, Fig-
ure 15 shows some preliminary results of using an off-
the-shelf online OCR tool (https://ocr.space) with no post-
processing on the composite labels. On our small sample,
we achieved just over 80% accuracy with about 15% er-
ror and 5% omissions. Using improved OCR tools (such
as Google’s open source OCR that includes support for
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Figure 13. Plot between validation score and mean normalized
SSD from 40 composite test images after non-linear registration.
A strong correlation between the two is seen. Result of visual
inspection (by three different individuals) of the final composite
image is shown using colored circles. The increase in size of the
circle indicates the composite image, which earlier was not read-
able (when using only affine registration) became partially or com-
pletely readable after non-linear registration.



Figure 14. Coordinate grid (bottom row) successfully computed using our method on a set of labels with pinned insects (top row). These
labels include occlusions from the insect, labels and the pins and illustrate the acute camera angles necessary to capture the labels due to
the different shapes and sizes of the pinned insect. Please see supplementary materials for more examples.

many languages, including Latin) and some post-processing
to sharpen the composite image, the OCR results can be
greatly improved.
Performance: Our complete label processing pipeline (rec-
tification of a label image, pair-wise non-linear alignment,
and final compositing) takes approximately 3 minutes with
our unoptimized MATLAB implementation on an Intel
Core i5 CPU with 8GB RAM. The most time-consuming
step in our pipeline is finding dense correspondences for
non-linear alignment which takes up to 2 minutes. We are
working on a optimized C++ implementation which should
finish the entire pipeline in less than a minute.

4. Discussion
Large collections of pinned insect specimens require a

quick capture and processing pipeline to accomplish a goal
of digitizing millions of specimens in a 2-3 years time
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Figure 15. OCR results for composite and test labels.

frame. We have developed an image processing pipeline
that demonstrates that, with some computation, it is feasi-
ble to produce label images that are OCR-ready from im-
ages of “intact” pinned insect specimens. The application
of OCR will greatly improve the processing time for digi-
tal capture of label information. Our prototype system uses
light field cameras that can provide an in-focus image for a
large depth of field, removing the need for careful focusing
after specimen placement. We have demonstrated that even
with one or two lines of text, the approach can be used to
rectify labels.

There are several avenues for potential future work.
First, we have presented results using only 3 cameras. We
envision that a “production” pipeline will have views from
all sides of the specimen to obtain full coverage of each
label. Second, the final compositing step could be im-
proved. For example, after segmenting out the pixels asso-
ciated with the the pin, a gradient based Poisson composit-
ing could be applied. Third, our approach does not provide
consistent results on handwritten text on labels often found
in older collections. We have not yet explored methods to
handle hand written labels. The approach also exhibits sen-
sitivity to illumination changes. We are currently develop-
ing an enclosure that will provide consistent illumination
conditions.
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