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Abstract. A major challenge in automatic registration, alignment and
3-D reconstruction of conventionally processed mouse brain slice images
is the presence of histological artifacts, like tissue tears and losses. These
artifacts are often produced from manual sample preparation processes,
which are ubiquitous in most neuroanatomical laboratories. We present a
novel geometric algorithm to automatically detect these artifacts (dam-
age regions) in mouse brain slice images. Our algorithm is guided by
our observation that the tears and tissue loss in brain slice images re-
sult in external geometric medial axis of the outer contours to go deep
inside the tissue. We tested our algorithm on 52 mouse brain slice im-
ages with major histological artifacts and successfully detected all the
damage regions in the dataset. Our algorithm also demonstrated much
lower errors when quantitatively evaluated by performing feature based
registration between all 52 slices and their corresponding Allen Reference
Atlas (ARA) images.

1 Introduction

An annotated virtual 3D mouse brain populated with accurate neuronal recon-
struction from In-Situ Hybridization (ISH) images is important for brain circuit
mapping research [8, 14, 19]. The ability to reconstruct such virtual brain mod-
els and perform quantitative analysis on them requires automatic registration of
thin, high-resolution, artifact-free mouse brain slice images [14]. However, brain
slice images produced from conventional processing techniques are often present
with severe histological artifacts, making it extremely difficult for further pro-
cessing such as automatic alignment of adjacent slices and annotation of regions
of the slices [20].

For common analyses of brain section images, we register these sections with
a standardized reference atlas like the Allen Reference Atlas (ARA) maps. Such
registration will also become difficult in the presence of histological artifacts
introduced during manual sectioning of mouse brain tissues. All these artifacts
can be broadly categorized either as global 3D deformations, which may happen
during extraction of the brain from the skull, physical effects like gravity during
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mounting, etc. or as slice specific 2D deformations, which are very common
tissue artifacts introduced during sample preparations including serial sectioning
of the brain (shearing and tearing) and mounting slices on glass slides (tearing,
folding, absence or displacement of small parts from some sections). Though most
of the above artifacts have been addressed by complex non-linear registration
techniques [18], slice-specific 2D artifacts such as tissue tears and tissue loss are
extremely difficult to automatically detect and resolve [13]. Hence, slices with
such artifacts are typically discarded, thereby, losing precious data.

There have been previous works on detection and correction of these slice-
specific 2D artifacts. However, as most of them are either semi-automatic or
use information from neighbouring slices, they are not scalable. For example,
Qiu et al. [21] proposed to automatically detect slices with artifacts by looking
for unexpected differences between a specified slice and its neighbouring slices.
Hence, artifacts in an isolated slice cannot be detected and corrected. Further,
such a method also requires slices to be close enough and the adjacent slice to
be devoid of any artifacts, such that the difference between slices will imply
the artifact. This sometimes poses restriction on the neuroanatomists who may
want slices only from specific regions of the brain or want to slice the brain at
larger intervals. Kindle et al. [13], on the other hand, proposed a semi-automatic
method where they manually identify small tissue tears and fill them by warping
neighboring regions around the tear. This approach only works well when the
tear is small, horizontal and smooth. Moreover, one needs to be careful about
obtaining undesirable warping effects while fixing these tears, especially when
they are severe as shown in Figure 2.

While the above techniques aim to detect and correct slices which have ar-
tifacts, many researchers try to overcome them. The most popular approach
among these is performing cryosectioning of frozen mouse brain tissues [7, 16,
3]. The rationale behind it is that frozen tissues are much easier to slice into
thin sections without tearing or significant deformation. Another technique of-
ten used is the introduction of quality control checks [16]. After sectioning the
mouse brain, highly damaged slices are manually removed from the registration
pipeline. Further, to aid in registration of such highly damaged slices, manual
landmarks are often placed [7] or even manual initial registration is performed
[25, 26]. All the above measures which mitigate the 2D slice-specific artifacts
and help its registration, in addition to being time consuming and expensive,
require a lot of planning of the process. Although, slicing thicker sections may
be a plausible solution to avoid tissue tears [2], it constrains the subsequent
staining and imaging procedures. One needs to ensure that the slicing thickness
is in accordance with the penetration depth of the stain and depth of focus of
the light microscope used. Serial two-photon tomography (STPT), though pro-
duces artifact-free, well-aligned, high-resolution 3D datasets, which makes the
registration process much easier [16, 22, 14], neural circuit mapping based on
conventional processed brain sections continues to have technical challenges in
standardized registration with highly deformed and damaged brain slices. We
present a method to automatically detect and handle damages in such mouse
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Fig. 1: Overview of our damaged region detection algorithm: (i). Dominant edges (MEI)
extracted from the mouse brain microscopic slice image on the left. (ii). Outermost con-
tour of MEI, which serves as the input to our algorithm. (iii). Constrained Delaunay
Triangulation of vertices V & edges E using the outermost contour of MEI. (iv). Ex-
terior Voronoi vertices (magenta) and edges (brown). (v). Three candidate damage
regions whose medial axis (Voronoi edge sequence) length was above α. Points corre-
sponding to only the 2nd candidate area were classified as damage region points as
they were not vertically symmetric. (please zoom in for details)

brain microscopic slice images in order to achieve an accurate registration. Fur-
thermore, since we detect artifacts on individual slices without using information
from neighbouring slices, our method can be easily scaled to handle very large
datasets without imposing any restrictions to the conventional neuroanatomical
procedures.

In this paper we introduce a novel geometric algorithm to automatically
detect major histological artifacts such as tears and tissue loss (missing data) in
thin, high-resolution mouse brain slice images. We not only provide qualitative
analysis by visual verification from subject experts but also perform quantitative
evaluation of our method. We register 52 conventionally processed mouse brain
slice images with major histological artifacts to their corresponding annotated
atlas slice images from ARA with and without our damage detection algorithm
and compare various registrations errors.

2 Proposed Method

Our algorithm to detect damage regions (tissue tears and tissue loss) in mouse
brain slice images is motivated by two key observations. First, the contours
of most of the damaged regions have long exterior medial axis creating deep
concavity into the tissue (Figure 2). It is quite rare that the tear happens in the
interior of the tissue directly without affecting the boundary of the tissue.
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Fig. 2: Results of our automatic damage region detection algorithm: A sample of eight
high-resolution mouse brain slice images with single or mutiple histological artifacts
(tears and missing data) are shown in the first column. Exterior Voronoi vertices (ma-
genta) and edges (brown) are shown in the middle column. Detected contours of the
damage regions (yellow) in all eight images are shown in right column. All the sample
images were obtained from different datasets spanning different regions of the mouse
brain and we successfully identified all the damage regions in all the eight images.
(please zoom in for details)
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Second, the damage region exhibits vertical asymmetry between left and right
regions of the mouse brain. It is also very rare that the same type and shape of
tear or missing region happens on both lobes of the brain tissue slice.

Input. Given a high-resolution mouse brain microscopic slice image, we first
compute a microscopic-edge image (MEI) by extracting the dominant edges us-
ing a variant of Canny edge detector. Our dominant edge detection algorithm
automatically computes the threshold for hysteresis to suppress the edges with
low gradient magnitude as shown in Figure 1 (i). The automatic threshold com-
putation uses the idea of persistence of edges from the histogram of the gradient
magnitude. We skip its details as its beyond the focus of this paper. We then
compute the outermost contour of MEI, which serves as the input to our damage
region detection algorithm (Figure 1 (ii)).

Construction of Constrained Delaunay Triangulation. Using the ver-
tices V and edges E of the outermost contour of MEI, we first construct a
Constrained Delaunay Triangulation (CDT) [5]. All edges of E are a part of this
triangulation as shown in Figure 1(iii). We then remove all the triangles lying
inside the contour and retain only the exterior Delanuay triangles. As the outer-
most contour of MEI is a simple closed curve, we use the Jordan curve theorem
to compute whether a triangle is inside or outside the contour [10]. If the winding
number of a point inside the triangle is zero, the triangle lies outside the contour,
else it lies inside. In order to obtain reliable Voronoi vertices and edges that can
be used in computations downstream, we further clean the remaining exterior
triangles by removing all “skinny” triangles – any triangle whose circumcenter
does not lie within the triangle.

Computing Voronoi vertices and edges. From the vertices V ′ and edges
E′ of the remaining Delaunay triangles, we represent the exterior medial axis
as the sequence of Voronoi edges that do not intersect the edges of the original
contour of the image [1]. Since this would create many small medial axes as
shown in Figure 1(iv), we threshold them (remove edge sequence < α; we use
α = 20) and retain only those medial axes corresponding to deep concavities.
The vertices of the Delaunay triangles corresponding to the retained medial axis
Voronoi vertices serve as candidates for the damaged regions as shown in Figure
1(v).

Checking for Asymmetry and Damage Region Detection. There may
be important features of the brain that may also have long medial axis, but these
features are also symmetric on both sides of the brain. Hence, as the final step
of our algorithm, we check whether the damage region candidate edge points are
symmetric between the left and right half of the mouse brain. For this we first
divide mouse brain into two halves by splitting its oriented bounded box (OBB)
equally into left and right regions [9]. Popular methods for OBB estimation
such as principal component analysis (PCA) [12] will fail when used on highly
damaged microscope slices (Figure 2) because the spurious edge points produced
in damaged areas of the tissues images bias the PCA. Hence, we compute the
convex hull of edge points in MEI and resample it such that we have a fixed
number of points uniformly sampled along the convex hull. We then use PCA on
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Fig. 3: A. Correspondences used during feature based non-linear registration: Dense
correspondences before (left) and after (right) our damage region detection algorithm
between MEI (bottom) and its corresponding atlas from ARA maps (top). Correspon-
dences are shown using similarly colored curve segments. B. Computation of registration
errors: 20 manually selected points (magenta) are uniformly distributed and overlayed
on the atlas from ARA maps (background). Error between their corresponding points
in the matching microscopic slice is computed and reported in Table. 1. (please zoom
in for details)

the resampled convex hull curves to compute the OBB of the microscopic image
slice. The combination of PCA on the resampled convex hull curve eliminates
the edge effects including bias due to noise, tissue damage and other artifacts
caused during sample preparation.

We then check for symmetry of the candidate edges of the damaged region
by reflecting those edge points about the vertical axis dividing the OBB in
half and using a small neighborhood to search for points having similar normal
vectors around the expected region of symmetry. Normal vectors of edge points
are computed using moving least squares [17] as it smoothly interpolates the
normal vectors, diminishing the effect of noise, sharp features and topological
foldings. Candidate edge points, which are asymmetric between the left and
right regions of the brain are classified as damage region points. For example, as
shown in Figure 1, out of the three candidate damage regions, only the points
corresponding to the 2nd candidate damage region were classified as damage
region points. Points corresponding to the remaining two (1st & 2nd) candidate
damage regions form important features of the mouse brain slice images and
hence are also vertically symmetric.

3 Results and Discussion

We evaluate our algorithm on 52 conventionally processed microscopic images
of coronal mouse brain slices (5000 x 8000 pixels) with a resolution of 0.6µm per
pixel. These images were manually identified by subject experts from different
mouse brain datasets to contain severe histological artifacts such as tears and
missing data. These artifacts were produced either during serial sectioning of the
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Fig. 4: Results from feature based registration techniques with and without our algo-
rithm: The figure shows results of a standard feature based non-linear registration
with corresponding ARA (overlayed in white) without (left) and with (right) our dam-
age region detection algorithm. Incorrect registration is shown using yellow marked
regions. (please zoom in for details)

mouse brain tissue or mounting of the thin slices on glass slides. Among the 52
slices, 45 slices had single tears or missing regions while 7 slices had multiple tears
or missing regions. We ran our automatic damage region detection algorithm on
all 52 microscopic images and successfully identified the damage regions in all
of them as shown in Figure 2. Our damage region detection results were found
qualitatively quite accurate by the subject experts.

We also quantitatively evaluate our algorithm by comparing results from
standard feature based registration techniques when used with and without our
damage region detection algorithm. Feature based registration algorithms have
been quite popular in the past for registration of microscopic images [6, 15, 4, 23].
However, the presence of edges due to the damage regions misleads and corrupts
the correspondence finding (Figure 3A), resulting in bad registration. Hence, it
is important to first accurately identify and remove points in the damage regions
before performing feature based registration.

We perform an inter-stack feature based registration where we align all 52
microscopic images with their corresponding annotated atlases from ARA maps1

with and without damage region detection. In both cases, for registration, we first
perform global affine alignment using a variant of iterative closest point (ICP)
[24]. This is followed by a final non-linear alignment by solving the Laplace’s
equation with Dirichlet boundary conditions [11] (Figure 4). The only difference
between the two cases is our damage region detection algorithm where the de-
tected damage region points are excluded from the correspondence finding as
shown in Figure 3A. For statistical analysis we compared the root-mean-squared
error (RMSE), the median error (MEE) and the maximal error (MAE) of 20
corresponding points which were manually picked and distributed uniformly in

1 Publically available from the Allen Brain Atlas Project
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Table 1: Comparison of registration errors (in pixels) with and without our damage
detection algorithm after affine and final non-linear (affine+elastic) transformations.

With Our Algorithm Without Our Algorithm

Average
RMSE

Average
MEE

Average
MAE

Average
RMSE

Average
MEE

Average
MAE

After Affine
Transformation

13.37 10.66 25.27 16.28 13.30 30.79

After Non-Linear
Transformation

3.91 2.53 4.36 5.51 4.47 11.90

the microscopic and atlas image pair (Figure 3B). Table 1 summarizes the regis-
tration errors after both affine and non-linear transformation with and without
our damage region detection algorithm. We found lower registration errors when
alignment was performed with our algorithm than without it.

We have developed and demonstrated a completely automatic algorithm to
not only identify but accurately locate and handle slice-specific histological ar-
tifacts such as tissue tears and tissue loss in high-resolution microscopic mouse
brain slice images. As these artifacts are very common in conventionally pro-
cessed slices, our algorithm will have wide applicability and usefulness in broad
range of experiments and neuroanatomical laboratories. We show results of one
such application where we perform accurate registration of highly damage slices
with their corresponding annotated atlas from ARA maps. Such applications
play a vital role in reconstruction of mouse brain datasets. Another advantage
of our algorithm is that it can locate multiple such artifacts that may be present
in single slice images as shown in Figure 2(vi) and Figure 2(vii). This enables and
facilitates extremely thin sectioning of the mouse brain tissue, which is necessary
for an accurate 3D mouse brain model reconstruction. To further illustrate the
difficulty and the effectiveness of our method, we also show the results of our
damage region detection algorithm on a synthetically damaged slice image with
more than three tissue tears, which are deep and randomly placed (Figure 5).

However, there are still some extreme artifacts, which cannot be handled by
our algorithm. For example, slices in which the tear goes all the way through will
have more than one component. Such tissues are very difficult to mount since
multiple components have to be accurately placed in their original positions onto
the glass slide. In such cases, our algorithm will fail as it detects multiple com-
ponents, and hence we do not process such slices any further. Few other extreme
deformations are folding of the tissue and overlap of adjacent tissue regions. For
such artifacts, a more complicated or semi-automatic approach might be helpful.

4 Conclusion

To the best of our knowledge the presented work is the first that automati-
cally detects slice-specific histological artifacts such as tissue tears and tissue
loss in high-resolution mouse brain slice images without using information from
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Fig. 5: Results of our automatic damage region detection algorithm on a synthetically
damaged mouse brain slice image: To show the variety of damages our algorithm can
handle, we ran our algorithm on a synthetically created damage slice image with four
different types of tissue tears at different locations. (i). Original mouse brain micro-
scopic slice image. (ii). Synthetically damaged slice image with four tissue tears. (iii).
Exterior Voronoi vertices (magenta) and edges (brown). (iv). Detected contours of all
the damage regions (yellow) overlayed on the damaged slice image. We successfully
detected all the four different types of tears in the mouse brain slice image. (please
zoom in for details)

neighbouring slices. Our robust damaged region detection algorithm condones
histological artifacts that occur in standard procedures to produce brain slice
images. We believe that this work will have a major impact on brain circuit
mapping by facilitating conventional neuroanatomical image registration and
creation of 3-D whole brain map databases.
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