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A. Effects of Mesh Priors on GAMesh

As GAMesh uses a mesh prior to generate a surface for
the output points from a point network, a natural question
to ask is what are the prerequisite of a mesh prior. Here we
study the effects of the mesh prior on the final reconstructed
surface.

We voxelize the ground truth shape at three different res-
olutions and use the same set of points to reconstruct sur-
faces using GAMesh. Specifically, we create three mesh
priors whose number of octree leaf nodes are 100, 500 and
4000 respectively and use 2500 points which are sampled
on the ground truth mesh. As evident from the Fig. 2, using
the same points, GAMesh reconstructs geometrically sim-
ilar shapes whose topology is dictated by the topology of
the mesh prior. This confirms that GAMesh does not need
accurate mesh priors for surface generation. As long as the
mesh priors have correct topology and coarsely resemble
the original mesh, accurate surfaces will be generated. In
our experience, such mesh priors, if not already present,
can be easily obtained using existing reconstruction meth-
ods (volumetric/implicit networks). We, however, observe
that surfaces generated using coarser meshes have differ-
ent triangulation. This is due to the edge collapse operation
during simplification where the cost to collapse an edge de-
pends on the length of the edge. If we allow edge-flip as
an operation during simplification, it is possible that we can
generate consistent triangulation’s independent of the tem-
plate mesh resolution.

Non-Manifold Mesh Priors. We also show few surfaces
generated from GAMesh using non-manifold mesh priors
which contain multiple connected components (Fig. 3). As
GAMesh borrows the topology of the mesh prior, we ob-
serve that the output mesh is disconnected as the mesh prior
itself is not a single watertight mesh.

Bounds on the Mesh Priors. Having seen a few qualitative
examples, we now provide theoretical bounds on the mesh
prior for GAMesh to generate accurate surfaces with correct
topology. We first define what is a feature size and then
provide a formal proof on the bounds of the mesh prior.

For reconstructing a surface, a feature size f for a point

upper mesh prior

Figure 1: Bounds on Mesh Prior. For GAMesh to recon-
struct a surface with correct topology, the sum of the error
in both the mesh prior (blue) and the output points from the
point network (green) need to be less than a threshold.

on the surface is defined as the Euclidean distance from that
point to the nearest point on the medial axis [!], which can
be represented by the set of Voronoi vertices as shown in
Fig. 1.

Lemma 1. In order for GAMesh to reconstruct a surface
with correct topology, the sum of the error in the mesh prior
and the error in the output points needs to be less than 1.

Proof. Let the error in the mesh prior be o1 f and the error
in the output points be o2 f. In order for GAMesh to re-
construct a surface with correct topology, the upper output
points need to be projected onto the upper mesh prior. Thus
from Fig. 1 we get,

of +oof <(f —o2f + f—o01f)
(o1 +02)f < (2f — (01 +02)f)
2(01 +o9)f <2f
o1+ 09 <1

ey

Hence, the upper bound on the mesh prior is when o =
0 i.e. the mesh prior is the same as the ground truth sur-
face and the lower bound is 07 < 1 — 05. However, for
all practical purposes, o1 + 02 < 0.5 for reconstructing a
surface with correct topology using GAMesh. From Fig. 2
we can see that the mesh prior with resolution 100 (second
column) does not satisfy Eq. 1 resulting in an output surface
with incorrect topology.
O
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Figure 2: Effects of Mesh Prior on GAMesh. Surfaces generated using the same points (orange) but with three mesh priors
of different resolution (shown in inset). GAMesh creates geometrically similar but topologically different meshes. (Please

zoom in for details)
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Figure 3: Non-Manifold Mesh Priors. GAMesh recon-
struct accurate surfaces even with non-manifold mesh priors
which have multiple connected components. The topology
of mesh prior is carried over to the output mesh (see pink
arrow).

B. Effects of Outputs Points on GAMesh

Next, we demonstrate that GAMesh always reconstructs
meshes with correct topology while preserving as much de-
tails as maintained by the output points of the network. We
show this by injecting noise in the vertices of a mesh and
evaluating the surface reconstructed from GAMesh, which
uses the original mesh as prior. Specifically, keeping the
mesh prior fixed, we reconstruct surfaces with GAMesh by
adding Gaussian noise in the normal direction with standard
deviation 5%, 20% and 30% of the length of the bounding
box diagonal to the vertices of the mesh.

From Fig. 4 we observe that adding noise in the nor-
mal direction does not affect the output (i.e. triangulation)
of GAMesh, as the output points are projected to the same
point on the mesh prior. This suggests that the error in the fi-
nal reconstruction (low F1 score) is due to the point location

(c) 20% Noise

(d) 30% Noise

Figure 4: Effects of Points on GAMesh. Surfaces gen-
erated from GAMesh when Gaussian noise is added to the
mesh vertices. Using the same mesh prior (ground truth
mesh), we preserve as much detail as maintained by the
points (Please zoom in for details).



and not from GAMesh. We also observe that GAMesh re-
constructs a smooth surface provided the points lie close to
the surface of the mesh prior. However, as GAMesh guar-
antees to connect all output points, rough surfaces can be
generated even if there is noise in only few points. This
helps GAMesh differentiate subtle differences between two
point clouds making it an ideal meshing algorithm for eval-
uating point reconstruction networks (as shown in Section
5.1 of the main paper).

C. GAMesh preserves Topology and Geometry

GAMesh preserves the topology of the mesh prior as all
operations such as local triangulation and edge collapse are
topology preserving operations. Under extreme simplifica-
tion, certain edges, if collapsed, may geometrically (visu-
ally) close genus of the model, although in implementation
with multi-edge data-structure between vertices, the genus
and rest of the topology can be maintained. With sufficient
number of output points from the network such extreme
simplifications and hence visual change of topology can be
prevented. GAMesh also preserves the geometry as much
as possible based on the output quality of points networks.
Since these reconstructed points are projected to the closest
point in the mesh, GAMesh does its best to preserve the ge-
ometry by imposing the connectivity of the input mesh to
the closest reconstructed points.

D. Single View Reconstruction

In Figure 7 and 8 we provide more qualitative compar-
isons of surfaces reconstructed from GAMesh when used in
post-processing to combine the output points of our point
network (PSG™') and meshes from IM-NET. Unlike GE-
OMetric which deforms a fixed template, we borrow the
topology from IM-NET to reconstruct meshes with correct
topology. Furthermore, using the output of point networks
which are specifically trained for geometry, we reconstruct
meshes with higher fidelity than MeshRCNN using similar
number of points (see the wings/engine of the planes and the
details around the wheels of the cars in Fig. 7 & 8). Lastly,
using BPA to generate a surface for the output points of the
point network gives inconsistent results as it fails to connect
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Figure 5: SVR on Natural Images. Single-view recon-
struction results on two images from Pix3D [4].
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Figure 6: Training with GAMesh. More qualitative
comparison of surfaces reconstructed using point networks
trained with GAMesh.

all the output points.
We also test our method on natural images such as those
from Pix3D [4] in Fig. 5.

E. Training Point Networks with GAMesh

Data & Implementation Details To demonstrate the ad-
vantages of training point networks with GAMesh, we train
two networks one with Chamfer loss and the other with
mesh 1oss (L£,,esn). Both networks have the same archi-
tecture where for the image encoder we use ResNet-18 [3]
and for the point decoder 4 fully-connected layers of size
1024, 512, 256, (3x250). We use ReLU non-linearity and
batch normalization on the first three and tanh on the final
layer. We use data from two categories (chair and couch)
of ShapeNet, specifically one image per shape making a to-
tal of 7956 train and 1991 test images. We train both net-
works with a batch size of 4 images and Adam optimizer
with learning rate 10~ for 100 epochs.

Qualitative Results In Fig. 6 we provide more qualita-
tive results of surfaces reconstructed when GAMesh is used
to train point networks. Training point networks with a
mesh loss on surfaces generated by GAMesh allows us to
focus on high curvature regions like edges of chair and
couch. Although here we only used the reconstruction loss
(Linesh), similar to MeshRCNN [2] and P2M [5], additional
shape regularizers can also be introduced to impose further
smoothness.
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Figure 7: Single View Reconstruction. Qualitative comparison of ShapeNet testset meshes from various SVR approaches.
Using meshes from IM-NET as priors, GAMesh reconstructs accurate surfaces for the output points (orange) of PSG™.
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Figure 8: Single View Reconstruction. More Qualitative results from ShapeNet testset for Single-View Reconstruction.
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